Monochromatic progressions in random colorings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monochromatic progressions in random colorings

Let N(k) = 2k/2k3/2f(k) and N(k) = 2k/2k1/2 g(k) where f(k) → ∞ and g(k) → 0 arbitrarily slowly as k → ∞. We show that the probability of a random 2-coloring of {1, 2, . . . , N(k)} containing a monochromatic k-term arithmetic progression approaches 1, and the probability of a random 2-coloring of {1, 2, . . . , N(k)} containing a monochromatic kterm arithmetic progression approaches 0, as k → ...

متن کامل

Monochromatic 4-term arithmetic progressions in 2-colorings of Zn

This paper is motivated by a recent result of Wolf [12] on the minimum number of monochromatic 4-term arithmetic progressions (4-APs, for short) in Zp, where p is a prime number. Wolf proved that there is a 2-coloring of Zp with 0.000386% fewer monochromatic 4-APs than random 2-colorings; the proof is probabilistic and non-constructive. In this paper, we present an explicit and simple construct...

متن کامل

Monochromatic Cycle Partitions in Local Edge Colorings

An edge colouring of a graph is said to be an r-local colouring if the edges incident to any vertex are coloured with at most r colours. Generalising a result of Bessy–Thomassé and others, we prove that the vertex set of any 2-locally coloured complete graph may be partitioned into two disjoint monochromatic cycles of different colours. Moreover, for any natural number r, we show that the verte...

متن کامل

A probabilistic threshold for monochromatic arithmetic progressions

We show that √ k2k/2 is, roughly, the threshold where, under mild conditions, on one side almost every coloring contains a monochromatic k-term arithmetic progression, while on the other side, there are almost no such colorings.

متن کامل

Monochromatic Arithmetic Progressions With Large Differences

A generalisation of the van der Waerden numbers w(k;r) is considered. For a function f : Z! R + define w(k; f ;r) to be the least positive integer (if it exists) such that for every r-coloring of [1;w( f ;k;r)] there is a monochromatic arithmetic progression fa+ id : 0 i k 1g such that d f (a). Upper and lower bounds are given for w( f ;3;2). For k > 3 or r > 2, particular functions f are given...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2012

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2012.01.010